🟢 LLM 超參數設定
- 理解 Temperature, Top P, 與 Maximum Length
介紹
我們可以使用某些 LLMa 設定來控制模型的各個方面,例如它的「隨機」程度。可以調整這些設定以產生更具創意、多樣化和有趣的輸出。在相關的超參數中 Temperature、Top P 和 Max Length 這幾個設定是最重要的,但我們描述了 OpenAI Playground 允許您修改的這些設定。
Temperature

Prompt
What are 10 weird, unique, and fun things to do at the beach? Make a list without descriptions.

ChatGPT Output (Temperature=0, Top P = 1)
1. Build a sandcastle 2. Collect seashells 3. Play beach volleyball 4. Fly a kite 5. Have a picnic 6. Try paddleboarding 7. Play frisbee 8. Go snorkeling 9. Take a long walk along the shore 10. Watch the sunset

ChatGPT Output (Temperature=1.5, Top P = 1)
1. Wade in the shallow waters blowing bubblegum bubbles 2. Create intricate sandcastle sculptures 3. Join an improvised beach volleyball match 4. Take a scenic hike along the cliffs nearby 5. People-watch and guess each person's beach-related story 6. Collect seashells to create your own piece of beach art 7. Learn to surf or try other water sports 8. Kickstart a spontaneous sand fight 9. Attempt shoreline fishing like the locals 10. Engage in friendly competition by organizing a sandcastle building contest
較高溫度設定產生的輸出提供了更具想像力和多樣化的海灘活動清單。這對於創意寫作非常有用。
如果將溫度調整得太高,您可能會得到無意義的輸出,例如「在 Becksmith Stein Man Beach 附近開始一場海綿球棒球本壘打比賽」。
Top P
Top Pb 是語言模型中的一項可設定的超參數,有助於管理其輸出的隨機性。它的工作原理是建立一個機率閾值,然後選擇組合可能性超過此限制的令牌。
The cat crafted up the ___
中的下一個單字。它可能考慮的前五個單字可能是tree
(機率0.5)、roof
(機率0.25)、wall
(機率0.15)、window
(機率為0.07)和carpet
,機率為0.03。如果我們將 Top P 設定為 .90
,AI 將只考慮那些累積機率機率至少達到 90% 的令牌。在我們的例子中:
- 選入
tree
-> 累積機率是50%
. - 然後再選入
roof
-> 累積機率成為75%
. - 最後再選入
wall
, 最後累積機率到達90%
.
因此,為了產生輸出,人工智慧將在這三個選項(tree
、roof
和wall
)中隨機選擇一個,因為它們圍繞著它們組成所有可能性的 90% 左右。與不加區別地從整個詞彙表中採樣的傳統方法相比,該方法可以產生更多樣化的輸出,因為它根據累積機率而不是單一標記縮小選擇範圍
Maximum Length
其它 LLM 超參數
還有許多其他設定可能會影響語言模型輸出,例如 Stop Sequences
和 Frequency Penalty
。
Stop Sequences
Frequency Penalty
Presence Penalty
Determinism 註釋
即使 Temperature 和 Top-P 完全設定為零,AI 也可能不會每次都給出相同的精確輸出。這是由於人工智慧「大腦」中 GPU(圖形處理單元)計算的隨機性所造成的。
結論
總之,在使用語言模型時,掌握 Temperature、Top P、Maximum length 等設定至關重要。這些參數可以精確控制模型的輸出,以滿足特定的任務或應用程式。它們管理回應的隨機性、回應長度和重複頻率等方面,所有這些都有助於改善您與人工智慧的互動。